Adaptively Secure Unrestricted Attribute-Based Encryption with Subset Difference Revocation in Bilinear Groups of Prime Order
نویسندگان
چکیده
Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time a user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on the size of the attribute universe and logarithmically on the number of users in the system, and (c) are either selectively secure, which seems unrealistic in a dynamic system such as RABE, or adaptively secure but built in a composite order bilinear group setting, which is undesirable from the point of view of both efficiency and security. This paper presents the first adaptively secure unbounded RABE using subset difference (SD) mechanism for revocation which greatly improves the broadcast efficiency compared to the CS scheme. Our RABE scheme is built on a prime order bilinear group setting resulting in practical computation cost, and its security depends on the Decisional Linear assumption.
منابع مشابه
Fully Secure Unbounded Revocable Attribute-Based Encryption in Prime Order Bilinear Groups via Subset Difference Method
Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time an user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on t...
متن کاملNew Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption Key Exposure Resistant, and with Short Public Parameters
Revoking corrupted users is a desirable functionality for cryptosystems. Since Boldyreva, Goyal, and Kumar (ACM CCS 2008) proposed a notable result for scalable revocation method in identity-based encryption (IBE), several works have improved either the security or the efficiency of revocable IBE (RIBE). Currently, all existing scalable RIBE schemes that achieve adaptively security against decr...
متن کاملUnbounded ABE via Bilinear Entropy Expansion, Revisited
We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemeswith constant-size public parameters under static assumptions in bilinear groups. Concretely, we obtain: – a simple and adaptively secure unbounded ABE scheme in composite-order groups, improving upon a previousconstruction of Lewko and Waters (Eurocrypt ’11) which only achieves selective ...
متن کاملDoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation
Security and privacy are very important challenges for outsourced private data over cloud storages. By taking Attribute-Based Encryption (ABE) for Access Control (AC) purpose we use fine-grained AC over cloud storage. In this paper, we extend previous Ciphertext Policy ABE (CP-ABE) schemes especially for mobile and resource-constrained devices in a cloud computing environment in two aspects, a ...
متن کاملEfficient revocable identity-based encryption via subset difference methods
Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an extension of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the complete subtree (CS) scheme for key revocation. In this paper, we present a new technique fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016